Fast integral equation methods for the Laplace-Beltrami equation on the sphere
نویسندگان
چکیده
منابع مشابه
Fast integral equation methods for the modified Helmholtz equation
Talk Abstract We present an efficient integral equation method approach to solve the forced heat equation, ut(x) − ∆u(x) = F (x, u, t), in a two dimensional, multiply connected domain, with Dirichlet boundary conditions. We first discretize in time, which is known as Rothe’s method, resulting in a non-homogeneous modified Helmholtz equation that is solved at each time step. We formulate the sol...
متن کاملConvergence of the point integral method for Laplace–Beltrami equation on point cloud
The Laplace–Beltrami operator, a fundamental object associated with Riemannian manifolds, encodes all intrinsic geometry of manifolds and has many desirable properties. Recently, we proposed the point integral method (PIM), a novel numerical method for discretizing the Laplace–Beltrami operator on point clouds (Li et al. in Commun Comput Phys 22(1):228–258, 2017). In this paper, we analyze the ...
متن کاملNumerical quasilinearization scheme for the integral equation form of the Blasius equation
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution o...
متن کاملTransmission problem for the Laplace equation and the integral equation method
We shall study a weak solution in the Sobolev space of the transmission problem for the Laplace equation using the integral equation method. First we use the indirect integral equation method. We look for a solution in the form of the sum of the double layer potential corresponding to the skip of traces on the interface and a single layer potential with an unknown density. We get an integral eq...
متن کاملPRELIMINARY VERSION Finite elements for the Laplace-Beltrami equation on parametric surfaces
In this paper we make a thorough study of the use of the finite element method to numerically compute harmonic maps from parametric surfaces to the plane. There are essentially two choices to be made in the FE method: (1) which elements and (2) which quadrature. We show that by using linear elements and point-based linear quadrature the method reduces to the cotangent method studied by Dziuk, P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Computational Mathematics
سال: 2013
ISSN: 1019-7168,1572-9044
DOI: 10.1007/s10444-013-9319-y